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Abstract— Autonomous racing challenges, since the very
beginning of automated driving, have inspired new development
and defined state of the art. By this, autonomous racing has
strongly contributed to the research field of automated driving
and indirectly generated important societal impact, increasing
traffic safety by reducing or even avoiding human errors in
driving. Accurate, reliable and robust perception is a key factor
for driverless vehicles, and lidar sensor is currently one of
the most promising sensor technologies used for environmental
perception. A lidar sensor is versatile as it can be used for
mapping purposes, object detection and for the localization.
This makes it predestined for many automotive applications.
In this publication, the Autonomous Racing Graz team reveals
their approaches for mapping and localization using only
a lidar sensor, and the modified software components from
Autoware. Developed solutions are applied and validated in
two ROBORACE Season Alpha challenges. The entire process,
from mapping, over path planning, to online localization, is
summarized and discussed.

I. INTRODUCTION AND RELATED WORK

Autonomous driving requires a permanent monitoring of
the environment, that includes detection, recognition, and
classification of objects [1]. Based on these, the vehicle needs
to respond accordingly, in a tactical or operational way, e.g.,
lateral and longitudinal motion control. Therefore, accurate
environmental perception, robust vehicle state estimation and
precise localization of the vehicle within a map are highly
important. Also, to increase the response quality even further,
the prior knowledge of the road geometry can be used as
well. This is essential for racing, as it allows to reach the
limits of high speed driving [2].

Maps that allow precise localization can be generated using
GPS or lidar sensors [3]. While GPS relies on infrastructure
and is not always available, lidar allows a standalone local-
ization based on reflectivity or Gaussian mixture maps [4],
[5]. Also, simultaneous localization and mapping (SLAM) is
possible: building a consistent map of the environment while
simultaneously determining the location within the map [6].

ROBORACE (RR) is a competition of autonomously
driving, electrically powered vehicles: it requires from the
participating teams to master given tasks to the best possi-
ble extent [7]. In the so called precision and localization
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Fig. 1. The Roborace DevBot passes a gate on the Circuit de Croix-en-
Ternois in France. The lidar is placed on the top of the race car.

challenges, a circuit has to be driven as fast and accurate
as possible. The racetracks and the environment has a high
variation in the layout and the structure. The track contains
tight gates, as shown in Fig. 1, that have to be passed at
high speeds. To the net driving time, penalties, e.g., missing
a gate or hitting cones, are added. The prior usage of lidar
technology within RR is given in [8], where combined IMU,
GPS and lidar measurements are fused for localization, to
meet the high speed requirements. In comparison to RR
racetrack setup, Formula Student Autonomous Racing Series
uses well marked racetracks with the cones, and an overview
for mapping and racing can be found in [9]. Also, reports
about lidar-based localization and dead reckoning are given
in [10], while a general survey of sensor technologies and
the state of the art is described in [11].

Although there is a lot of research in previously mentioned
fields, there is no prior work analyzing and evaluating the
entire process, starting from a high precision mapping to
online localization for racing, where only a limited time for
the whole process on a racetrack is available. The proposed
approach adapts and extends known methods to meet the
challenging requirements of high-speed driving and enables
accurate, robust, and low feature lidar localization. Further,
its performance is compared with GPS based localization.

The article is structured as follows: After introducing the
challenges of the competition in Section II, the mapping
process with the racing line generation is explained in Section
III. The localization algorithm, its required software stack and
used time synchronization mechanism are described in Section
IV. The proposed approach is evaluated in two competitions
in Section V.

II. PROBLEM DEFINITION

The gates placed during the challenges within RR’s
Season Alpha have a width of 2.3 m. With a vehicle width
of 2.0 m, only 0.15 m on each side is available to avoid
collisions with the cones that represent the limits of the
gate. The three main challenges arise: First, lidar-based



Fig. 2. Circuit de Croix-en-Ternois in France. Point cloud data are red. Track borders are blue and the racing line is black.

localization, GPS independent, needs to be robust, provide
high update rates, and account for high accelerations. Second,
computation time, sensor inaccuracies, and synchronization
between components that may not be worth of mentioning
under normal driving, become highly critical under racing
conditions. Third, due to the nature of a racing circuit, the map
contains a reduced amount of features, compared to inner-city
driving: information about restricted areas, gate positions, and
path planning must be obtained from the generated lidar map.

III. MAPPING

The progress of making a map of the operating area as
a racetrack is even today a tedious and not always well-
defined procedure: especially, when environmental factors
like fences or hard to detect materials come into play. One
has to find the ideal setup between map size and quality due
to the amount of data which further affects the processing
speed. Nevertheless, a full 3D map of the area can provide
major advantages in several disciplines. The localization uses
the full extent of the available map information and outputs
more precise and stable position. When having a look at the
rich point cloud data in every dimension, it appears obvious
that a 3D approach is superior among any other 2D method.
The 3D point cloud has also the advantage that the ground
of the mapped area is represented and the reflectivity of
materials (e.g. asphalt, vegetation, cone, etc.) are included.
The knowledge about exact borders of the racetrack increases
the robustness and quality in raceline computation. The
mapping is done in an offline manner by recording the area
of interest and running the Normal Distributions Transform
(NDT) mapper afterwards. The offline computation enabled
testing of different parameter configurations to obtain the
best mapping result. The technique behind NDT is described
in Section IV.

A. Point cloud map

The applied mapping algorithm outputs a 3D point cloud,
where every point consists of position and measured intensity.
The intensity represents the reflectivity of a measurement and
depends on the traveled distance and the underlying material.
Using the intensity for visualization, the differentiation
between road, vegetation and other objects can be further

increased. Fig. 2 visualizes the point cloud map consisting
of 4.5 million points of the racetrack in France.

B. Transformation between coordinate systems

Lidar localization is always calculated with respect to the
previously recorded high definition map (local coordinates
within the map). However, if the racing trajectory is defined
in global coordinates, tracking needs the actual position in
global coordinates during the race as well. To derive the
required static transformation from lidar (local) position to
global position upfront, two different approaches can be taken:

(A) Calculating the transformation from matching distinct
reference points (landmarks) known in advance (e.g., via
Google maps) during mapping via CloudCompare, an open
source cloud and mesh processing software [12]. The advan-
tage is that no GPS measurement is needed during the map
recording. The disadvantage of this approach is the required
knowledge of exact positions of landmarks.

(B) In contrast to this, the optimization based approach
used by the Autonomous Racing Graz team is summarized
next. The idea is to use already available sensor measurement
traces including GPS measurement from test drives. Compared
to approach (A) this method relies on GPS measurement
(disadvantage), but does not need prior knowledge of distinct
landmark locations upfront (advantage). The transformation
parameters (rotation angle α and translation [dx, dy]) are
found by optimizing the matching between transformed lidar
measurement and corresponding GPS measurement. This is
done in two steps: (a) a least squares (LS) approach to find an
initial transformation and (b) an iterative closest point (ICP)
approach to fine-tune [13]. Step (a) is beneficial, since step
(b) should be initialized in close vicinity of the final solution.
Note that step (a) minimizes the Euclidean distances between
related measurement samples, while step (b) matches the
shapes of the entire measurement traces in total. The LS is
done as follows: The geometric relations between lidar and
GPS measurement[
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X is obtained by using the More-Penrose pseudo-inverse
X =

(
ATA

)−1
AT · B, which leads to the LS solution

for X . From X , the angle α can be calculated by α =
atan2 (X4, X3). Finally, Fig. 3 shows that the ICP-step is
able to generate more accurate matching with respect to the
LS approach with different cost criteria, i.e., the minimum
distance between each GPS measurement sample and all
transformed lidar measurement samples.
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Fig. 3. Histogram of the minimum distances between each GPS measurement
and the entire transformed lidar measurement trace for the Zala Zone
racetrack. Average minimum distance error for LS: 0.53[m], ICP: 0.26[m].

C. Racetrack layout

Raceline optimization requires recorded point cloud data
enhanced with metadata of the racetrack, i.e., defined borders.
The following steps need to be performed. First, lidar
measurements are recorded while driving slowly along the
track. Second, the recorded lidar measurements are used to
generate the point cloud map. Third, the created point cloud
map is processed in RVIZ (Visualization tool for ROS) to
obtain the point cloud. The metadata of the inner and outer
border are defined visually by hand, since the racetracks’
boundaries differ from race to race, (cones, boxes, curbs,
walls or their combination) and automation does not pay off.
As example, the racetrack in Zala Zone (Hungary), with inner
and outer borders highlighted in black, is depicted in Fig. 4.

D. Reference line generation

The layout of the racetrack is defined by inner and outer
borders, represented by a list of global 2D coordinates. Based
on these, a reference line used for raceline optimization is
generated. The smoothness of the reference line is important,
as it ensures convergence in further optimization.

The reference line generation uses an algorithm developed
for fast tuning and adaptation during the racing events. It in-
corporates narrow gates and also provides low computational
effort. The reference line generation consists of eight steps: (1)
data reading and duplicates removal, (2) linear interpolation,
(3) distance matrix calculation, (4) pair finding, (5) reference
line calculation and (6) smoothing, (7) inclusion of the corner

20 m
Reference Line
Racing Line

Fig. 4. Racetrack on the proving ground Zala Zone in Hungary. Track
borders are black. The reference line is red. The optimal racing line is blue.

points and (8) gate points. The resulting reference line is
shown in Fig. 4, highlighted in red. A detailed description
of the algorithm can be found in [14].

E. Optimal racing line generation

The smooth reference line is an input to the algorithm that
calculates the optimal racing line. The minimum curvature
trajectory planning approach, given in [2], is used for raceline
optimization. In comparison to [15], this approach achieved
better performance in terms of smoother and smaller peak
curvature, making it more robust to real world applications.
Also, the significant lap time reduction could be achieved.
The resulting optimal racing line is depicted in blue, in Fig. 4.

IV. LOCALIZATION ARCHITECTURE

A. Normal distributions transform

The Normal Distributions Transform (NDT) algorithm is
used for mapping and localization [16]. NDT is a part of the
open-source self-driving stack Autoware. In this configuration,
a 64 layered lidar was used to record the data for mapping
whereas the one with 16 layers for localization. In principle,
a real measurement is compared with previously generated
point cloud map. The created point cloud map is taken as
a reference and further broken down to three-dimensional
boxes, with each having individual probability distribution.
During the alignment process, the algorithm searches for
similarities. Outliers or changes in the environment alter
the matching quality and represent a common problem.
The applied probability density functions can solve this by
enabling a ”near match” to the alignment. Fig. 6 shows both
point clouds, that are required for receiving a position, are
visualized for comparison.

B. Software components

Autoware is one of many open-source stacks used to
address the problems of self-driving vehicles. It runs on
the top of the middle-ware ROS and it unites individual
software components, providing interfaces and tools for fast
and easy setup routines for automated driving [17]. An
overview of the software architecture for the mapping and
localization is visualized in Fig. 5. The top part shows the
required components for the mapping and the bottom part
the components for the localization during driving. In both
cases, the os1 node provides the point cloud from the lidar.
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Fig. 5. Software components running on the DevBot 2.0. Top: track mapping. Bottom: lidar localization running online on the autonomous race vehicle.

Fig. 6. The point cloud map (red) is used to match real measurements
(black) that allow to obtain the location on the racetrack.

During the mapping process, only the os1 node is run-
ning and storing the data on the vehicle. Afterwards, the
ndt mapping node processes point cloud data offline, gener-
ating the 3D point cloud used for localization of the racetrack.
NDT mapping does not require any additional sensors, and
the ndt mapping package is very simple to use. The input of
the mapping module is solely the lidar measurement without
any preprocessing. While the incoming scans are sequentially
added to the map, previously seen regions are taken into
account to stabilize the simultaneous localization and mapping
(SLAM) procedure. The point cloud map is further reduced
and filtered by a voxel grid filter. With this, the quality and
usability of the map is increased significantly.

The algorithm for the mapping is re-used for the lo-
calization, with slightly different settings and a modified
procedure, which increases the real time capability. The
ndt matching node receives distortion-corrected and down
sampled measurement cloud as an input, and it outputs the
position and statistical information about the overall matching
quality. While the mapping approach uses the full point cloud,
the online localization only takes a small fraction for this
task. The NDT matching algorithm uses the created point
cloud map provided by the map loader. The point cloud map

Fig. 7. Top: Far distance view on filtered point cloud (thick black points)
used for localization. Bottom: Effect of lidar distortion and its correction,
containing offline generated map (grey), lidar measurement (red), and
corrected point cloud (green).

of the racetrack has a different coordinate system compared
to the GPS coordinates system. Therefore, the map loader
transforms the point cloud map to the GPS coordinate system.
This step is used only if an evaluation of the lidar localization
is necessary, otherwise the lidar localization can have its
separate coordinate system.

To handle the amount of measured points, the point cloud is
down sampled with the points downsampler. There, a voxel
grid filter samples down the data in a three-dimensional space.
The input point cloud is separated into a set of cubes (voxels)
with a defined edge length (voxel leaf size). All measured
points in the voxel are reduced to one measurement, leading
to a high data reduction, especially in the near field of the
sensor.

Lidar sensor usually provides data in one single point cloud,
which is provided at the end of a complete scan. All points
stored in this point cloud, refer to the same origin (the sensor’s
position). Once the sensor is moving during a scan process,
single measurements refer to globally different reference
locations, leading to errors in distance and direction. These
errors, caused by the so-called lidar distortion, increase with
the speed and the turn rate. As the performance of localization
is highly dependent on the accuracy of the measurements,



distortion needs to be corrected. The lidar distortion node
corrects the distortion of the input point cloud, based on the
approach given in [18]. Fig. 7 shows the measured lidar point
cloud (red) and the corrected point cloud (green).

C. Time synchronization

To increase performance and accuracy of the lidar-based
localization, it is important to know the exact measurement
time. For example, when the race car drives with a velocity of
30 m/s, a time delay of 10 ms results in an error of about 0.3 m.
Therefore, all time delays, starting from the measurement till
the execution of the NDT algorithm, need to be considered.
The lidar-based localization provides the position when the
measurement was started. During the position calculation,
the DevBot 2.0 continues moving and is at another position.
This results in a position that is older than 40 ms. For the
compensation of the time delay, the vehicle state and the
estimated position of the NDT algorithm are used to predict
the position at the current time. For the prediction, a single-
track model is used, where input velocity and turn rate are
provided by the vehicle odometry.

V. EXPERIMENTS

The described approach was evaluated at two RR competi-
tions, using the DevBot 2.0. The first event was located at
the Zala Zone proving ground in Hungary and the second
one at the Circuit de Croix-en-Ternois in France. For the
localization performed on the two different tracks, the 360°
scanning Ouster OS1 lidar with a horizontal resolution of
1024 points was used. While the mapping was done with the
64 layer OS1-64, the localization used the 16 layer OS1-16.
Using less layers reduces the amount of points significantly,
allowing to process point clouds faster, while still decent
accuracy is provided. The sensor is mounted at a height of
1.1 m. Two GPS antennas, used for performance evaluation,
are mounted at the same height in front and behind the lidar.
As reference measurement system an Oxford RT4000 with an
inertial and position measurement unit is used in the race car.
The target hardware platform for the lidar localization and
the other racing relevant software components is a NVIDIA
Drive PX2 computing platform. While racing, the car reaches
longitudinal and lateral accelerations above 10 m/s2, as well
as velocities above 45 m/s.

The results from the localization competition in Zala Zone
are explained in detail, while the better weather conditions
provided higher lateral accelerations and higher tire grip.
This also makes the lidar localization more difficult, because
of the higher changes in acceleration between consecutive
point cloud measurements from the lidar. During the race,
no GPS data was available. Therefore, the data from the
training session was used to evaluate the localization accuracy.
Fig. 8 shows a histogram of the error between the lidar-based
localization and the reference GPS position. Most of the time
the error is below 20 cm and is mainly caused by longitudinal
driving direction, based on the timing issues in a ms range
of the lidar measurement uncertainty. The lateral error of the
lidar-based localization is less than 10 cm. A top-down view,
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Fig. 8. Histogram of the position error between the lidar-based localization
and the reference GPS position from the fastest lap at the training session.

Fig. 9. Top-down view of curve number 8, 9, and 10 of the racetrack. Blue:
GPS reference measurement. Red: lidar-based localization

given in Fig. 9, shows the history of the GPS (blue) and the
lidar localization (red). Both lines are overlapping, no lateral
differences to the reference GPS measurement is visible.
The position error between the lidar-based localization and
the GPS system is visualized over time in Fig. 10. The error
increases in situations of high changes in both longitudinal
and lateral acceleration of the autonomous race vehicle.

The Autoware’s NDT implementation provides a reliability
info, i.e., how good the result of localization is. The NDT
reliability is visualized in Fig. 11. It depends on the number
of iterations needed to find the position and the position
estimation accuracy. Lower values correspond to faster
convergence of the algorithm. It can be stated that in every
curve, with high lateral accelerations, the algorithm needs
more time to converge and the score of the NDT reliability
increases. In order to analyze the maximum performance of
the algorithm and to investigate if an ARM architecture is
sufficient for intensive lidar localization, a CPU version of
the NDT is used. Fig. 12 shows the CPU load of the NVIDIA
Drive PX2 during the race. It has two parallel computing
platforms (Tegra A/B), where each platform has three cores.
All safety software components, path planning tasks, and the
interface to the lidar are running on Tegra A. On Tegra B, the
lidar localization and the data recording are executed. The
average load on Tegra A does not reach critical limits: all
CPU cores are in average below 70 %. However, the lidar
localization causes high CPU load: often one of the core
reaches 100 % load. Detailed analysis shown, this is caused
by a significant change in velocity or turn rate. The difference
between the last and the current position becomes greater,
aggravating the determination of the current position by the
NDT and thus increases the computation time. However, the
underlying sensor fusion of lidar-based position and vehicle
odometry can handle a jitter of the lidar-based localization.

VI. CONCLUSION

This work analyzed and evaluated entire process of lidar-
based mapping and localization that was used for ROBO-
RACE Season Alpha racing challenges. It explained overall
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Fig. 10. Position error between the lidar-based localization and the reference
GPS position from the fastest lap at the training session.
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Fig. 11. NDT reliability during the race. A lower value represents a faster
convergence. Spikes in the reliability are related to curves on the track.

procedure used on the racing events: from high precision
mapping of a racetrack to the online localization by using
only lidar sensor. Proposed structure is adaptive and possible
to extend in a way to meet the challenging requirements
of high speed dynamic driving, while it provides accurate,
robust and low complexity lidar localization. The results were
successfully validated with the DevBot 2.0 racing car in two
racing challenges. Even without GPS sensor and with the
limited performance of the computing platform, accurate and
precise localization is possible to achieve.
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