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Abstract—For a long time LiDAR sensors have been used in
special purpose applications in robotics to perceive the environ-
ment. By the evolution of automated driving to higher levels
of automation, LiDAR sensors gain more and more importance
also in the automotive domain. Currently, LiDAR is about to
become one of the most important sensor technologies enabling
automated driving. To limit the emitted power due to safety,
state of the art LiDAR sensors scan the environment, which needs
time. This scan produces a cloud of points. In this publication the
distortion of the LiDAR measurement due to a moving sensor unit
is analyzed and a compensation is proposed. That correction, also
taking time delays into account, is applied within an autonomous
racing application using the LiDAR sensor for localization.
Finally, the advantage using the correction is discussed.

Index Terms—Autonomous vehicles, Automated driving, Sen-
sor systems, LiDAR, Distortion correction

I. INTRODUCTION

LiDAR is an acronym for light detection and ranging.
Sensors based on this measurement principle have been used
in robotics for longer time [1]. LiDAR sensors are subject to
rapid development, driven by automotive industry, due to their
high potential as main sensor for environmental perception.
Especially for localization and mapping applications, LiDARs
are the preferred sensor type [2]. The ability to directly
provide 3D information, the long detection range, as well
as the independence from ambient light, are main advantages
over other sensors used in automated vehicles. But still there
is further improvement needed for LiDAR to enter volume
market cars. The focus of ongoing development is increasing
resolution and robustness. At the same time cost and form
factor need to be reduced. Since emitted power is limited due
to eye safety within the bandwidths of interest, state of the art
is a scanning process that generates the LiDAR measurement.
Thereby, the entire field of view, often 360◦, is covered by
repetitive measurements for increasing angles, stored in a so-
called point cloud.
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Fig. 1. Moving LiDAR sensor, while scanning. Measurement is referenced
with last frame leading to displacement and orientation errors.

If the sensor is moving during the scanning process the
point cloud is distorted. This leads to severe disadvantages
in performance as is depicted in Fig. 1. First, distortion has
a significant impact on the accuracy of maps, when LiDAR
data is used for mapping [3]. Second, it increases the difficulty
of localization [4] once performed on basis of LiDAR maps,
independent of the amount of used LiDARs [5]. Finally, the
accuracy of distance measurements used for object detection
and further for collision avoidance may be diminished [6].
The correction of this distortion mainly receives attention in
the automotive sector: Byun et al. [7] perform a correction
based on GPS/INS sensor. To do so, before and after every
scan the exact position and orientation of the vehicle has
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to be known. As these measurements rely on infrastructure
(satellites), dependent on the environment, accurate enough
measurements may be challenging to obtain. A different
approach is chosen by the authors in [8]: there, only CAN
bus data is used. Although the results look very promising,
the approach in [8] contains inconsistencies in (4, 5, 6): they
seem to have different angle counting directions and intervals
assumed, although using the same symbol α.

Particularly when high performance is required, accurate,
reliable, and timely data is needed: for example, in [9] the
authors calculate a minimum curvature trajectory to reduce
the lap time of a race vehicle. The calculation relies on
LiDAR scans that precisely detect the track borders, allowing
to estimate the track width and in a further step the racing line.
LiDAR localization relying on a particle filter is used in [10] to
localize a vehicle at high speed. Caporale et al. [11] and Betz
et al. [12] introduce software architectures to map, localize,
and control a fully autonomous racing vehicle, clearly showing
that it is valuable to test approaches in racing conditions:
there, inaccuracies and small time delays may cause major
deviations.

The contribution of this publication is a detailed derivation
of motion distortion correction for scanning LiDAR measure-
ments using odometry information in an autonomous driving
application. For the above reasons, the same correction proce-
dure can be applied for extrapolating the point cloud to future
reference frames. This additionally accounts for known time
delays between point cloud measurement and computations
based on it. The corrected data allows accurate localization and
object detection. Furthermore, it is not bound to infrastructure
and thus, environment and scenario independent.

The article is structured as follows: After introducing the
LiDAR sensor measurement principle and estimating the lost
accuracy due to motion for typical sensors in section II, a
correction is derived and proposed in section III. A real-world
example is presented in section IV, showing the impact of
the proposed approach for an automated driving application.
Finally, section V discusses the benefits and summarizes
findings.

II. LIDAR DISTORTION

LiDARs that are able to cover a field of view of 360◦, often
use a fan of lasers that are positioned vertically with different
angles. Within one single measurement, each laser generates
one single point containing distance and intensity information.
As shown in Fig. 2, all rays are vertically aligned. Therefore,
the field of view can be seen as a single vertical scanning line.

To further increase the field of view, the rays are deflected
by using a movable (usually rotating) mirror. Due to simplicity
and velocity, most LiDARs scan just in one direction (1-D),
meaning the mirror can be turned in one dimension only.

After rotating the mirror to a new angle α, again, each
laser generates one single point measurement. Often, LiDARs
can be configured according to the desired resolution. This
influences how many different scanning positions need to be
covered during one revolution. Sometimes, also the spinning
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Fig. 2. Working principle of a 360◦ 1-D horizontal scanning LiDAR: laser
rays are deflected by a movable mirror (green), reflected by objects (red), and
captured with photodetectors. Each ray delivers one point that is added to the
point cloud.

frequency is adjustable, allowing to target more time critical
applications. Measured points from each scanning position,
i.e., a vertical set of points belonging to a defined mirror
rotation angle, are stored in a single point cloud. After a full
revolution the sensor provides the entire point cloud that there-
fore contains measurements from different time instances. Its
origin is the sensor itself. Once the LiDAR sensor is mounted
on a moving object (a vehicle), the origin moves during the
measurement. This movement during one 360◦ swipe, causes
the single measurement points to have different reference
locations in space. As this is not taken into account during
the creation of the full point cloud at the end of scanning, the
data is inconsistent. Due to the different reference locations,
measurements from recent scanning positions exhibit less er-
rors than the ones from the start of the scan. Assuming straight
line movement only, points in direction of travel seem to be
more distant - while points in the opposite direction of travel
seem to be closer than they actually are. Once the vehicle’s
orientation additionally changes (vehicle is turning) points also
appear at wrong directions. This effects in sum we name
as LiDAR distortion. The distortion error is increased with
faster movement, meaning higher linear or angular velocity.
Assuming the relative velocity between a vehicle and an object
is 30 m s−1 and a single revolution of a LiDAR takes 100 ms,
then the distortion from the first measured angle position to
the last is 30 m s−1 · 100 ms = 3 m. Objects may change their
shape significantly, once parts are detected from rays at the
start of the scanning process and other parts are detected at its
end. To this day, in the automotive field LiDARS are mostly
used in low speed applications, e.g., in inner-city traffic for
detection of static and dynamic obstacles. As the effect of
distortion increases with movement speed, vehicle ego-motion
dependent distortion is usually neglected.

III. DISTORTION CORRECTION

As discussed, LiDAR distortion is highly undesirable once
point clouds are used for high accuracy applications and/or
in connection with safety, e.g., collision avoidance and local-
ization, or for high speed applications, such as autonomous
racing.



In the following we state the necessary relations between
motion and measurement to later derive a correction of the
point cloud for a moving sensor. Constant velocity v and turn
rate ω of the sensor during point cloud recording is assumed.
For example, these two values can be calculated as the mean
from values at time instance before ti−1 and after ti the point
cloud recording:

v̄i = vi+vi−1

2 , ω̄i = ωi+ωi−1

2 , ∆t = ti − ti−1 (1)

To state a relation between the final global position Xi, Yi,
the orientation Θi, and the corresponding values at a shooting
angle α, a dimensionless correction-factor

c = 1−
∣∣∣ α−αstart
αend−αstart

∣∣∣ , (2)

is introduced. Note that the shooting angle is (only) used for
defining the time instance of shooting using dimensionless
parameter c. Therefore, there is no geometric interpretation
of the shooting angle done in the correction algorithm. As
a result the scanning direction of the LiDAR (clockwise or
counterclockwise) does not affect the correction. We assume
that αend = 2π and αstart = 0 in order to scale the interval
of the entire scan to the interval between a specific shooting
angle α and the final measurement at ti. Therefore, the
correction factor is zero for the final position (α = 2π) and
one for the initial position of the recording (α = 0). For
calculating the movement we introduce an angle δ. As shown
in Fig. 3, angle δ is half of the turning increment of the
orientation between frame Fα and frame Fi. It is positive for
clockwise and negative for counterclockwise turning. Given
that Θi − δ = Θα + δ one gets

δ = Θi−Θα
2 = c ω̄i ∆t

2 , where δ ∈ [−π, π]. (3)

The miss-placement of a measurement M due to motion
and the required correction is depicted in Fig. 4.

From now on the following notation is used: ArB denotes
a vector r starting in A, pointing to B. The corresponding
coordinates of this vector r with respect to a coordinate frame
FC (euclidean right hand) are collected in a column matrix of
the same size and denoted with C

ArB .
The corrected column matrix of coordinates of a single

measurement point i
irM with respect to frame Fi can be

calculated as the sum of the displacement of the sensor iirα and
a rotation of the measurement ααrM to anticipate the change
in orientation

i
irM = i

irα + iRα · ααrM . (4)

Rotation matrix iRα translates the measurement from frame
Fα to frame Fi. This is usually called passive rotation, since
the same vector is represented in different coordinate frames.
Since a positive δ is defined in direction of positive angles
(counterclockwise) from frame Fα to frame Fi, the rotation
from frame Fi to frame Fα using iRα involves rotation about
−2δ resulting in:

iRα =

 cos(2δ) sin(2δ) 0
− sin(2δ) cos(2δ) 0

0 0 1

 (5)
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Fig. 3. Movement (of the LiDAR sensor) from a shooting angle position α
to the final position i, which is the reference position of the full point cloud.
Absolute coordinates are denoted with X and Y . Θ is the orientation. The
curvature of the movement κ= ρ−1, with ρ being the instantaneous radius
of the motion.

𝛿

− 𝑟$%% cos𝛿

𝑟$%% sin 𝛿

𝑟+$
$

𝑟$%%

𝑋$

𝑋%

wrong 
uncorrected M

real M

Δ𝜃

𝑟+%%

𝑟+$
$ ≠ 𝑟+%%

Fig. 4. Wrong placement of measurement M due to movement of sensor. The
orientation is changed from pose α to pose i by orientation increment ∆Θ.
The required correction involves a rotation of ∆Θα→ i of the uncorrected
measurement and a displacement along i

irα.

The displacement iirα can be defined by using the vector of
negative traveled distance, since frame Fα is reached from
frame Fi by looking to the past. Assuming the sensor moves
along its local x-coordinate and the motion is according
to Fig. 4, the displacement correction is [−s, 0, 0]

T , with
s = c v̄i ∆t, rotated by the angle −δ, since movement is
along this direction. In this case the rotation is used as active
rotation since the frame stays the same and the vector itself
gets rotated. The displacement is therefore:

i
irα =

 cos(−δ) − sin(−δ) 0
sin(−δ) cos(−δ) 0

0 0 1

 −c v̄i ∆t
0
0

 =

= s

 − cos(δ)
sin(δ)

0

 (6)

Up to now the traveled distance s was calculated assuming
the path directly connects frame Fα and frame Fi by a
straight line. In fact, the sensor moves along the arc with the
radius ρ (see Fig. 3) instead along the secant, resulting in an
increased traveled distance. From Fig. 3 the relation between
the length of the arc sarc =ρ 2 |δ| and the length of the secant
ssecant =2 ρ | sin(δ)| can be derived to

ssecant = sarc ·

{
1, if δ = 0
| sin(δ)|
|δ| , otherwise

(7)
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Fig. 5. Providing up-to-date LiDAR data: distortion correction for the duration
of the scan and the computation time of the correction itself as well as
extrapolation of the point cloud considering application dependent time delays.

The calculation of s for moving along the arc, results in a
shorter distance virtually traveled along the secant and the
adapted relation for s as

s = c v̄i ∆t | sin(δ)|
|δ| . (8)

Note that the final correction of the full point cloud needs
specific angle dependent correction of each shooting angle
involving (1) to be calculated once and (2) to (8) for every
shooting angle.

Additional compensation of in advance known time delays
is tackled separately in the following and in contrast affects
all measurement the same. For example, the processing of the
point cloud, its correction, sending, receiving, and application
dependent operations introduce a time delay τ . Finally, the
measurement data at instance ti + τ is not up-to-date with
the actual position at this instance. As a consequence, the
closed-loop performance of control loops using this as an input
signal will be decreased. Fig. 5 shows an exemplary pipeline
for concurrent localization and object detection introducing an
application dependent time delay τ .

This time delay can be anticipated: the point cloud mea-
surement is extrapolated to a frame Fi+τ , which is a defined
time span τ ahead of frame Fi. Once velocity and turn rate
are assumed to be constant and only a single delay needs to
be considered, the extrapolation together with the presented
distortion correction is performed in a single step. To do so, an
adaptation of (1) is sufficient: ∆t = ti−ti−1 +τ . If in contrast
to that, updated values for velocity and turn rate and various
delays need to be considered (e.g., different computation
time), the extrapolation is performed in an additional step: the
approach from above is repeated once for the entire already
corrected point cloud. Following the same approach, the delay
compensation as shown in Fig. 6 can be formulated as:

i+τ
i+τrM = i+τ

i+τri + i+τRi · iirM (9)

with

i+τRi =

 cos(2δτ ) sin(2δτ ) 0
− sin(2δτ ) cos(2δτ ) 0

0 0 1

 , δτ =
ω̄i τ

2
(10)

and

i+τ
i+τri = sτ

 − cos(δτ )
sin(δτ )

0

 , sτ = v̄i τ
| sin(δτ )|
|δτ |

(11)
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Fig. 6. Anticipation of a time delay τ : extrapolate to future position.

IV. EXPERIMENTS

The effect of LiDAR distortion and its proposed correction,
presented in the previous section, is tested during Roborace’s
SeasonAlpha1 in Zala-Zone2. Based on a LiDAR map, gener-
ated while low speed driving, a vehicle localizes itself within
this map using current, corrected LiDAR measurements. To
do so, we use NDT localization [13] within the automated
driving stack Autoware [14] on top of Robot Operating System
(ROS) [15]. In ROS the correction is executed in a separate
node. Since τ (see Fig. 5) delays just the online availability
of the measurement, extrapolation is not necessary for offline
analysis as discussed in this section.

A. Setup

For the experiment the 360◦ 1-D scanning OS-1 LiDAR
from Ouster is used [16]. It offers 16 vertically aligned rays.
Together with a horizontal resolution of 1024 points, a single
revolution takes 50 ms. As shown in Fig. 7, the sensor is
mounted in a height of h = 1.1 m on top of a real race
car, provided by Roborace: the DevBot 2.01. Start and end
of the scan (α = 0◦ = 360◦) are heading in the opposite of
the driving direction (see Fig. 8). The scanning direction is
clockwise. Note that the OS-1 counts angles in the opposite
direction, starting from 360◦ and ending at 0◦. This must be
taken into account in (2): one needs to subtract 2π from the
shooting angle α. For further explanation, we divide the 360◦

view in four quarters: Q1, Q2, Q3, and Q4.
During the experiment, the vehicle drives counterclockwise

in a circuit containing different types of corners up to 90◦ (see
Fig. 9). The track boundaries are given by traffic cones, that
are placed every 5 m. Additionally, on the outside of sharp
corners, continuous barriers of the same height are used. The
underlying map, that is used as ground truth, is generated be-
fore the experiment under slow speed driving, using the same
LiDAR sensor. While driving, the vehicle reaches velocities
up to 25 m s−1 and longitudinal and lateral accelerations up
to 10 m s−2. A high accuracy on-board measurement system

1https://roborace.com/
2https://zalazone.hu/en/
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Fig. 7. OS-1 (red) positionated on top (h = 1.1 m) of DevBot 2.0.
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Fig. 8. Bird’s-eye view of DevBot 2.0 with rotation direction, starting in Q1
and ending in Q4.

Fig. 9. Race track in Zala-Zone mapped with OS-1 [16]: 730 m length, cones
every 5 m, counterclockwise driving direction. The small and the large red
circle identify the start/finish area (Fig. 10) and the corner used in Fig. 11
and Fig. 12.

provides odometry data (linear velocity and turn rate) every
20 ms, used to correct the LiDAR distortion as explained in
the previous section.

B. Results

Fig. 10 shows the racing car at stand still on the start/finish
line: the ground truth map is illustrated in transparent gray,
while the current measured point cloud is illustrated in pink.
The point cloud after applying the presented distortion correc-
tion is marked in black. As there is no longitudinal or angular
movement, the point clouds superimpose. The circles around
the vehicle are reflections from the asphalt. They are not
concentric, as the surface is not totally flat. Due to the position
of the sensor, there are occlusion areas around the vehicle,
caused by the body of the vehicle itself. Further, the two
GPS antennas, and the rear spoiler (see Fig. 7) occlude small
sections of the surround view in the corresponding direction.

The small picture on the bottom right of Fig. 11 shows the
in Fig. 9 highlighted corner of the track the DevBot 2.0 passed.
In the background one can see a dummy vehicle that is placed
at the inside of the curve, as well as the barriers indicating the

Fig. 10. DevBot 2.0 standing still at the start/finish line showing no distortion:
raw point cloud (pink) and corrected point cloud (black) match.
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P1
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Fig. 11. DevBot 2.0 after a 90◦ corner shows the effect of distorted points
(pink) and their correction (black). The small picture in the lower right corner
illustrates this scenario.

outside of the curve. The measurement directly after the corner
is illustrated in Fig. 11: at position P1 there is a significant
difference between the ground truth map and the sensor data
(pink points). Due to the driving direction of the vehicle, the
barrier in P1 seems to be closer than it is. For the same reason,
in P2 and P3, the cones seem to be further away, although the
error decreases as a result of more recent measurements. In
P4 the effect of distortion almost vanishes as there the most
recent measurements are available. In all cases, the correction
is able to determine the real position of the objects. The effect
of distortion is not only visible once objects are present but
also on behalf of reflections from the floor (circles around the
vehicle). The difference between circles from distorted and
corrected point clouds decreases more and more from Q1 to
Q4.

Fig. 12 shows a zoomed in view on Q1 of the scenario in
Fig. 11. For better visualization of the distortion effect, the real
borders of the dummy vehicle, based on the ground truth map,
are marked in green. Again, without distortion correction, the
vehicle seems to be closer than it is. Note that points that



Fig. 12. Outline (green) of the dummy vehicle that is captured by the LiDAR
sensor (pink points) in Q1 (see Fig. 11). Ground truth data and current
measurement does not match: its correction is marked with black points.

0° 360°

Fig. 13. Proposed sensor alignment once distortion correction is not available.

appear inside the object boundaries are reflections from the
floor below the object.

If distortion correction by any reason could not be applied,
e.g., due to lack of accurate odometry data, we propose to
align the LiDAR sensor in a way such that the influence from
the distortion is minimized. Exemplary, for a road vehicle,
measurements targeting in driving direction are most critical:
objects may suddenly appear and thus, need to be detected as
fast and as accurate as possible. Only once this is guaranteed,
an appropriate maneuver may be planned and executed in time.
Therefore, a sensor alignment as illustrated in Fig. 13 may be
appropriate to ensure that the most relevant measurements are
taken most recently. Once a sensor scans counterclockwise,
the alignment needs to be mirrored accordingly.

V. CONCLUSION

As LiDAR sensors are integrated in an increasing number of
automated driving applications, where safety, or performance
are important, the measurement has to be as accurate as
possible. As shown in this article, the correction of raw
LiDAR data measurement is simple and highly beneficial
for moving vehicles already at medium velocities due to
the comparably low revolution frequency of 360◦ scanning
LiDARs. The correction assumes constant known velocity
and turn rate during measurement and can additionally be
used to convert/extrapolate the measurement to future frames
in order to sync with localization. For the given example
of autonomous racing the approach was successfully applied
and results show the applicability. Future application of the
correction is planned for enabling increased accuracy for high
definition mapping using LiDAR at high driving speeds.
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